To

From

SuslECT:

DATe:  March 27, 1975 .

Distribution

———————

M. Pavkovic Q_ G:C /M-S /’US

O+ 4

The problem of overlappin a m an'advancedkpoint of view
ABSTRACT

Recently, a new approach for the ﬁfilization of GC-MS data has been
proposed. The main novelty consists af subjecting 2ll of the eluting
components from the gas chromatograph to the MS scans. The obtained huge
volume of new information enables a chemist to get a much more detailed
look in the chemical composition of a sample than previously. Unfortunately,
there is no evidence that the new technique will make the problem of
overlapping peaks obsolete, although:it will certainly take away some of its
edge. |

This is perhaps a good time for a brief critical review of therfield.
An advanced viewpoint is-adopted, because the "advanced" viewpoints tend
to be unifying, and it is in this form, the author believes, the material

should be handed cver =o the chemists and to the programmers.
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INTRODUCTION

Recently, a novel approach for the utilization of GC-MS data has been
proposed [1, 2, 31.

In this.approach the mass spectra of all eluting components from the
gas chromatograph, even very minor ones, are collected in a single
un. This technique places a wealth of new information into
the hands of a chemist, who is now capablg? with the help of a éomputer,
to get a much closer and detailed look into the true chemicai composition
of a s¢ A ' 7
of dealing ﬁith the problem of overlapping peaks, althbugh it does hold the
promise that this problem will now appear with much less severity than
previously. An exampié of a situation where the p#obiem of overlapping peaks
can hardly be avoided is provided by two eluting components with similar
chromatographic retention indices which are characterized by only one
prominent ion in their respective mass spectra, and which ion happené to
be the same in both spectra. Then, the only_évailable ion that canm
betray the presence of ﬁhese two components is the ohé.in common; and if
the retention indices lie sufficiently close, the resulting peak in the
(retention index, ion current) plot will b= a coupositg one, asking for #
suitable resolution techmnique to-cope with the situation;

| There exists a number of résolution tzchpiques.currently in»use.' They

can be devided into two more or less distinct classes: those with a
well-defined mathematical and conceptual basis and those of more heuristic

nature.



CLASS A

This class covers those techniques which have a sound mathematical and
conceptual basis. The class A is characterized by the ability to cope,
at least in principle, with ail possible situations that can arise in practice.
In other words, any peak shape no matter how complicated, can be subjected
to an analysis whose ultimate result must be a2 unique sequence of elementary
peaks which approximate, in a well-defined mathematical sense, the original
comp&site peak.

The basic underlying assumption in the class A is that the "elementary"
peaks caﬁ be represented by a family of analytic functions such as the
géussian functions, shew-gaussian functions, Poisson Distribution functions,
and others. We will have _

%(x) = a, \E‘(x,u) + aZ\PZ‘ (x,0) + ee. * aﬂ"e‘(xla),
where 191 (%}a) are the elements of this'family, 2 the coefficients to be
determined by the fit and §}(x) represents the shape of the composite peak.
¢ stands for a fixed set of free parameters whose values must also be
determined uniquely from the fit. Approximating { (x) in terms of ﬁ-(x,a)
functions means making the difference |

€)) h (x) = {—‘(X) - a, ﬂ(xla) - ... -&,‘“ﬁ‘(x,a)
as small as possible. Mathematics knowns at least two ways of giving the
vague notion of smallneés a rigoroué meaning. One is based on thé concept of
norm, while the other utilizes a more general notion of a functional. Both
notions aésociate a number, or a set of numbers, to a function, but they

do this in a somewhat different manner.



Least—~Squares method: A common definition of a norm on a space of functions

is the integral %-
o) ‘“i” = [ lf»(X)lzde

We say that the function h is small if the norm H h n » defined by (2), is '
small. 1In this context the approximation “(or resolution, as chemists call
it) of. a compos:.te peak g (x) 1n terms of a fixed set of elementary peaks

\P (X ,0() means determ.nlng the parameters a; and °( in such a2 way to make

the integral

g \.fcx)-a,,\e‘ (x;d)-—-qzﬁ(x,q)- cen — q“\&(’ﬁ“}i dx

as small as possible. This is the famous least-squares approximation whose

graphical illustration is given below.

A beautifulA ex umple of the

least-squares approximation. The
data are resolved into the four
gaussian functions plus a polynomial

background. -



From the viewpoint of ﬁumerical mathematics the least squares approximation
is particularly suitable approach to a fitting problem if the functionms
%Di(x,a) form so called orthogonal set. The orthogonality is defined

by the requirement fthat the integrals
S Y: ("1"‘)\6 (x,) dx

L. R
all vanish for 1.% 3 . Unfortunately, the functioms that can conceivably
be used in the problauw of resolution of gemposite peaks are not orthogonal,
This can be easily verified on the example of gaussian peaks where the integrals
c.€ ] Cs ] + he . ‘
S(«. [ dx / L«,bA,CJ,CJ >0

refuse to vanish for any finite choice of the peak parameter$, Physically, it is
quite obvious why the peaks \Fgﬁgcannot form an orthogonal set. They are ali
positive functions knuﬁber of ions variable cannot possibly accept a negative'

value!), and an integral of a product of positive functions is always positive

»
v

itself, never zero or negative.

Without having the benefit of dealing with an orthogonal famil} of .
functions, the numerical mathematics usually faces great difficulties in
pursuing the least squares approach. The trouble is that the integrals (3)
usually display a very complicated functional dependence upon the. parameters.
a; and o , and it becomes a non-trivial problem to determine for which
values of these parameters the integrals reach their minimum. It is also

known that the outcomes of the iteration procedures which are employed in the

least squares calculations are notoriously sensitive upon the correct choice of



the starting set of parameters. An unfortunaﬁe choice may léad to
divergences or to an inordinately large number of iterations. Or, one
may end up with a "false" solution, lacking reasonable physical
interpretation. |

In summary, the method of least squares is mathematically well-defined -
and conceptually easj to compfehend. These are the obvious advantages.'
When applied to the problem of overlapping peaks the least squares
. method has the unfortunate tendency'of running into the difficulties of
computational nature.“ Immediate dangers are divergenées, slow
convergence and misleading solutions. Whén contemplating the uée of
least squares in the problem of peak resolution, one should first try #
judicious set of the family of functions \e{Qﬁ“), represénfing the |
elementa;y peaks} A desirable set is the one whicﬁ makes the functional
dependence of the integrals (3) upon the peak parameters reasonably simple.
Neeldess to say, the functions \ftﬂxﬁ)must also resemble the peaks
actually observed in the laboratory. Next, a sﬁitable heuristic
procedure should be deviseq, whoée purposeshould be to make the initial.'
guess of the peak parémeters as close as possible to their true values.
This may ﬁot be an eésy task, if tﬁe original composite peak displays-a

tendency of  hiding its internal structure.



v

A situatiop.where it'is
not difficult to make a
" correct initial guess of the
values of the elementary peak

parameters

A situation vhere it is
difficult to guess the
approximate values of the

elementary peak parameters.



Norm represents one way of introducing the concept of "smallness"
or "proximity" in a space of functions. The associated topology is called
“strong" topology. There exists another way of iﬁtroducing topology
in the space of functions called'weal' topology. The two are related, but
the relationship cannot be properly e'igplained Vithout invoking concepts
of m vanced mathematics. This is mot our inﬁention here, in this
brief review. Let us consider a set of fungtions ‘l‘i(x), which can

~ ) o

be finite or infinj.te, orthogonal or not. Call this set ~) « To each

function L (x) we associate the set of numbers h;j, defined by
: _ o~ ‘ ’ ’ 4
'K,; = S‘?\LX) L, (x)Ax

Now, we can say that h{(x) is small on the set .\ ', if the sequence of

numbers h‘i is small. 1If h(x) is the difference (1) -Setween the éomposite__
peak function x) and the linear combinétion of elementary peaks
\R‘ (X, 0(-) ~» the sequence of inequalities. | |
: hy é | G{ (E-i small, say | ( 16—3)-
defines in a mathematically rigorous sense the degr_ee of proximiﬁy' in
which the élementary peaks approximate the function | g (x).
We can call this method ‘the resélution of-'com-posite peaks in the sense of

weak topology.



.The choice of functions srf(i)is-dietated by the mathematical
convenience and physical considerations. For example, when dealing -

with the gaussian peaks, it is convenient to use polynomials for <t:jLX)

An éxamgle:

Consider a composite peak .g‘(x), and let us restrict our efforts
to the resolution of this peak into not more than two gaussian peaks.
Furthermore, for theﬂsake of'simplicity,'we may assume that these two
peaks have the same width and the samé height, and differ only in

location. At the end,. we are left with the three free ?arameters: the two

peak locations plus the peaks height. FOI'QE functions we use the powers
1]
TI :X‘ i=0’ l’ 20
A ) .
‘The calculations go as follows:

Normalization of.Elementary Peaks: _ :
. A2 .

. ~bj (x-%;) .

NJS{” Y =4

Definition of. the Moments:

I, T = g g(x)xkc’x o ‘

S



— ~ ~X
R . 4 1\14 < "t‘ CiNﬂ_ ’e LL 2‘)
C4 = Cﬂ. = C
64 = c’z. = f»
Xo £ Xg
To = ¢ + ¢ = Je
_.biv(x—x,,)g‘ A - I
4 1 Ma SXQ dx —+ C,_N,_j)(e ( :') '
. K x
L - &GN g PR - -by (< )2‘-
I R dx -+ c,_MZ'SxL.e’ . ;
| - dx
A SI;\?P’E calenlug :]quS Lt

1-o = Qc
I1 = C ( x‘ "f‘ Xz)

szc(xfﬂu ) ¢ (2

or , S

c-'% ’

T —
Xy o = XT, = \/I%o__ 13101 "'(014 +.c!1)/2‘



Without losing generality we can place the origin of the coordinate
system in the center of the original composite peak, which is obviously
a symmetrical peak (otherwise we would not be able to decompose it
into the two gaussians of the same width and the same height!). This

will set Il to zero. By acknowledging that

-1 4 1 ‘

N.M‘.‘.‘

) . e
v a\hJ ,2.5J

and that b‘ = ng L

we obtain finally




-

This examplg illustrates how the method works. In a more complicgted
situation szigéve more free parameters, and will need correspondingly
larger number of i:: functions. Instead of using simple powers of ¥
we may also contemplate the use of more sophisticated Q; functions,
perhaps a subset of an orthogogfﬁ set of functions.

The least squares approach;the approach via the weak topology
all but exhaust the_techniques ofrpgak resolution that we classified
under A. The advantages of starting with a well-defined mathematical
procedure are obvious. It is'aisé important fhat no-peaks lie beyond
Fhe reach of these procedures. At least in principle, any reasonably
behaved positive definite function can be expressed as a linear superposition
of a sufficientlj large number of gaussian functioms, Poiéson Distribution
funétions, or some other sufficiently rich class of functions.

Aftef the process of peak resolution is completed, the obtained sequence

of elementary peaks is amenable.fo a sensible chemical interpretation.

Using various criteria, one can separate chemically significant peaks

from the peaks originating from column bleed, electronic noise or some other
undesifable source; |

The disadvantages of the procedures £rom the élass A cdﬁsist.mainly
in the computational difficulties which are a growing function of the
number of free paraﬁeters tﬁat ﬁavé to be determined; The algorithms

eith2r show the tendency to fail on more difficult cases, or require large

execution times. They may also lead to "spurious” or "false" solutions.



CLASS B

This class contains various techniques for peak resolution which
are not based on solid mathematical reasoning. These are heuristic
techniqués. From the outset their scope is limited. TFor example, a
ﬁarticular heuristic algorithm may require that a composité peék displays
a clear dip as a marker for the place where two peaks_ovérlap. If
the constituent peaks overlap too étrongly,'and nq.such dip is visible,»
the algorithm will not ﬁork. It was not intended to.work with such'a
case, in the first place. And so, some potentially interesting péak
shapes are left out from the beginning. This is a universal weakness of the
heuristic models. The advantages of the algorithms from the cl#ss B ldie
in their simplicity. As a rule they perform well.and produce fast
results when applied to the cases which lie well within their domain of
vcompetence., Perhaps a combination of several heuristic methods would be
desirable. To fix the ideas consider three difﬁerent algorithms Al, A2 and

A3, designed to deal with the following three classes of composite peak shapes.

/N

] _ 7 ‘ >
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!

SYMMETRIC SHAPE SHOULDER SﬂAPE - DIP SHAPE
Algorithm #1 Algorithm #2 Algorithm #3



After a composite peak was scanned, a special procedure would determine

in which eclass of shapes this peak belongs. Then, the ocrresponding

algorithm would be conscribed to perform the peak resolution. In the

general case the special procedure may involve the_whole library of
characteristic peak shapes. The search through this library may display

some of the characteristics of the pattern matching algorithms. A brief
outliné;of the overall algorithm may look something like this.

(1) First, use the least squares me;hpd to approximate the data with

a polynomial of apprqu{ately high degree;- Evidently the number of available
data points will plac;‘;estrictions on‘the degree of the polynomial.. Note

that tﬁe use of least squares in thé case of polyndmialsvis a well;known and
straightforward computational précedure. |

(2) Determine the,number and locations of the local maxima and minima,

points of inflection and otﬁer critical parameters that may be used to ﬁetermine
" the shape of a peak. Since we deal here with the polynomials, this information
comes from a large and well-known chapter of classical analysis. The
characteristics of peak shapes will be reflected in the restrictions imposed om the
coefficients of the approxiﬁating polynomials. This is a convenient way of coding
the peak shapes,.namely converting purely geometrical entities into the

strings of numbers. ‘ s |

(3) Once a peak is coded in terms of the coefficients of its associatéd
approximéting polynomiai; this code is compared with a "library of peakvshapes" :
and a call is issued to an app;opriate peak resolving algorithm, specifically |

design~d to deal with this type of shape.



(4) In this last step the referenced algorithm finally performs the task
of peak resolution, using as an input the peak parameters determined in the
step number 2. Having ino mind that the performance of most of the peak
resolving algorithms depends crucially upon the correct initial guess of the
peak parameters, we may surmise that a good overall performance of the algorithm
will depend a great deal upon the cleverness of the "preparation"” steps 1, 2
and 3. We recall that the proper functioning of the peak resolving algorithms
of the least squares type is particularlj sensitive up&n a good first guess of
the.peak parameters. |

. I was unable to find in the literature a reference to an algorithm
of the described type. Instead, one finds very simple algorithms,
intended to deal with equally éimple cases of composite peak shapes. Few

examples are given below.



LS

Geometrical Method;

If two peaks are sufficiently removed in their overlap to generate a
dip in the middle, some simple approximate geometrical methods for peak
resolution can produce satisfactory results. For example, one can drop a
straight line from the lowest point in the dip and calculate the

individual areas as illustrated by

v

or, -if a small peak "rides" on the tail of a larger peak, one can employ

so-called "tangent skim" method depicted below

TANGENT SKIM METHOD



Evidently this method is not applicable in the situations where the

local dip is missing, as the following "difficult" case nicely exemplifies:
P

1

Y

One special case:

In certain circumstances the locations and the shapes of the
elementary peaks are known, while their relative intensities in the
composite peak are not. The problem is, then, to determine the coefficients

_ci in

/

g(") = C, ‘P,\ (x"xl) + Cz(‘Pz (’("X'L) + .. + Cn(e (z. xn)

where ’P,,. (x - X :.') are the functions of the elementary peaks

and Xi their locations.



The method of least squares requires that a set of Ci’s ba found

which forces thé integral
2
T(earce, .. »Cn) -‘-g[g(x) ~c:ii (x=X4) —c{g_(x—xz)- - = Cﬁf, (x-xn)] dx

to read\ its minimum. The mathematical expression of this statement is
given by

X . |
- 20 : )4’=4)2'13)---)“L

a set of conditions which leads to the folloﬁng system of n linear

equations with n unknowns

gs‘*)—a ()Mg)dx =C1 '?4 (x .

- .y

B -x)dx + € ST’L Cox)Bs Goong) e +

===+ C, ?"(x-.xh)ﬂ(x-—x;_)‘dx

The solution of this system gives the aunswer to the problem of the
composite peak resolution for this special case of known locations and

shapes of the composite peak components.



P AR

Convolution:

g(x) denotes, as usual, the function that describes the shape of a

composite peak. One constructs the integral
S S(x)g.(x-—?)dx ) S Plads =4

in the hope that with the judicicus choice of the known test function ?(9) P
a useful information can emerge when the variable ¥ scans the region of
the peak. In the extremal situation when the test function

is the S = function, the integral reduces to the identity

gbc] g(x-fz)dx = gcf)' | )

and no new information can be extracted from the convolution. On the
other end of the spectrum of possibilities ? is a constant, and

we have
S glx)? (xq) alx = CA?ST.. - .

Again, very meager information is obtainped.



-

For the success of thé convolution method it is absolutely essential
that a correct choi&e of E) is being made. The best results will be
obtained when a composite.peak comsists of a sequence of elementary peaks
of approximately identical widths, and the test fﬁnction matches this
width with its own width. Then, whenevér the test function passes
over the one of the elementary components of é;b{) , an appropriate enhancement

occurs with better resolution as a result. This situation is depicted '

below. | : . .

When using the convolution method one should stay away from the choice
of too broad test functions, which may result in a misleading information.

This is illustrated by the following example:
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Are the peaks Gaussian?

There seems to be no acceptable theory, based on first principles,
wnich pradicts the shape of peaks observed £n the gas chromatography. In
the literature one finds claims [4] that in the ideal experimental
circumstances the peaks should be gaussian, but in practice this is
rarely, if ever, realized. At best, the peaks display a regular

shew-gaussian form, for which one can find an appropriate analytical

expression [53].



SKEW-GAUSSIAN SHAPE

GAUSSIAN SHAPE

There ex1st a very s1mple test for checking whether a peak is gaussu:m.

It is based on the characteristic property of gaussian functioas, namely

~b (%-%o) ‘14 '—b(x-Xo)9-

¢ I 4 Le | = 2‘?("&")

X

The associated algorithm goes as follows. Denote by yi the data amlitudes -
01_ — . 4 . .
Construct the array 2{ = 24 L - 31 and plot 2.: versus A

[
Over a genuinely gaussian peak this plot should be linear.

v ¢ ; :
o v '
. f} N . *
] ' M .

A 2+ consl : D read,
. ! ; ;
v ) { . t

‘- g - . -

?-.

Xp A Fo .

GENUINZT GAUSSIAN PEAK , ACTULLLY CBSERVED PEAKS



Unfortunately, it does not appear that this simple method can be modified
so that it can be used in the problem of resolution of composite peaks.
The deviations from linearity tell us very little about the internal
structure of the composite peaks - except that they are definitely not

gaussian.

Other types of peak shapes:

Aside from gaussian functions, other analytical forms have been
tried, some :0of them quite involved {5] and depending on as much as four
or five free parameters. We do not list here all‘options that are
offered in the literature, but only briefly discuss the Poisson Distribution
Peaks [6] which seem to be of relevance imn gas chromatography. The

functional form is determined by the two parameters a and n ¢

n —ax
_-Ena (x) = c(ay0) X @

c 15 a horma'liyﬁm
constant .

t)

It is easy to verify that the functiomn Tn)a (%)

satisfies the differential identity

=4 4 |
X fmq )y — Lpa ) =n —ax | )
X



and it is this identity which serves as a basis for the following simple
test (whether a peak is pure 17\1)& (x) type or not).

Let, again, y; denote the data amplitudes. Construct the array

W =4 ﬁ:n — g'é
| 4

and plot its points versus the variable i. If the peak under inépection

is of pure Poisson Distribution type, the array points w; over the peak

will lie on a straighf’line, as illustrated by

PURE POISSON DISTRIBUTION PEAK

The idea for this test is obviously a slight modificafion of the idea

for testing a gaussian character of a peak, and shares with the latter

all virtues and faults. Invparticular, it is difficult to imagine

what useful'information one could extract from a discovery that w;'s do not

lie on a straight line ~ except that in this case the peak is definitely not

of Poisson Distribution type.



The peaks of Breit-Wigner shape may also be of some interest in gas
chromatography. The shape, location and the peak size are determimed by three

parameters, a, b and Xq*

o

CBW,, () -

(=)« &

If a peak is of a pure Breit-Wigner type, the points of the array

‘Dx‘ﬂ = :,L;
e

should lie on a straight ling’when'the subscript i runs over the area

of the peak.



SUMMARY

A large number of various approaches to the problem of peak resoluﬁion
are known today. It is safe to say that none of these épproaches can
claim a complete success when confronted with composite peaks of
sufficient complexity (for example, an overlap of four or more peaks). .The
best strategy, then, seems to be to avoid the occurance of multiple peak
clusters altogether. The novel approach to the utilization of data
from the GC-MS combination, mentioned in the Introduction, offers a
great proﬁise in this respect. Since it is quite unlikely that more
ithan two chemical substances in a sample, with very similar Gé rétention
times,‘will have only one prominent ion in their mass spectra, and thaf
this ion will happen to be the same, we can expect to encounter rarely, if
ever, the need to deal with an overlap of more than two peaks in an
individual mass chromatogram. This situation should be contrasted to
a total ion current plot froﬁ a gas chromatograph, where an overlap of
three or more peaks is not an infrequent occurance. But an overlap’
of two, or even thrée, peaks is sufficientl& simple go be amenable to anal&sis.by
most good peak-resolving algorithms. My pgeference, in this case, is
either the use of standard 1éast squares techniques [5,~]],6r a goéd

heuristic algorithm based on geometrical considerations . ~__
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